
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2021 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Hash Table Overview

 hashCode

© 2021 Arthur Hoskey. All
rights reserved.

Hash Table

 Now we will cover hash tables in
general (prerequisite for describing
Java hashCode method)…

© 2021 Arthur Hoskey. All
rights reserved.

Array (Find)

 How would you go
about checking the
array for the value
49?

 (Advanced) What is
the big O runtime of
this operation?

Note: If you have not
taken a data structures
course do not worry
about the big O
runtime.

© 2021 Arthur Hoskey. All
rights reserved.

Array

91

10

1

0

49

22

3

2

11

50

5

4

09

array

index

data

…

Array (Find)

 How would you go
about checking the
array for the value
49?

Answer: Start from
the beginning of the
array and check
each element to see
if it has 49 in it.

 (Advanced) What is
the big O runtime of
this operation?

Answer: O(n)

© 2021 Arthur Hoskey. All
rights reserved.

Array

91

10

1

0

49

22

3

2

11

50

5

4

09

…

array

index

Check data

one by one

from the start

We must search the

whole array in the

worst case

What if we knew the target
element's index?

 Now assume we know the index of where the element
we are searching for is located.

 If we did know the index, then we could just go
directly to that element.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Array (Find)

 Assume that we
know 49 is at index
3.

 We can access it
directly

 We do not need to
"visit" indexes 0, 1,
or 2 to get there
(arrays have random
access).

 (Advanced) The
runtime of this type
of access is O(1).

© 2021 Arthur Hoskey. All
rights reserved.

Array

91

10

1

0

49

22

3

2

11

50

5

4

09

…

array

index

data

Go directly to

this element

(do NOT start

from

beginning

and visit each

element)

Hash Table

Hash Table

 Hash tables provide a mechanism to allow direct access to a piece
data (no searching from the beginning of an array).

 A hash table uses a function to convert the data we are searching
for into an index. This function is called a hash function. This is
the "magic" we use to go directly to an index.

 Unfortunately, multiple pieces of data could end up having the
same index be returned by the hash function. This is called a
collision.

 To remedy the collision problem each index is treated as a bucket
that can contain multiple values.

 Once a bucket is found, the bucket must then be searched for the
target value (this is not a big deal though).

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Hash Table

 A hash function is
used to determine
which bucket to put
data into (the data is
a key).

 Keys added to this
table are:

10, 91, 22, 49, 50, 11,
82, 19, 80

 The hash function in
this example is the
mod function.

Bucket = Key % NumBuckets

© 2021 Arthur Hoskey. All
rights reserved.

Hash Table

0

1

2

…

9 1949

91

805010

8222

11

Buckets

(indexes)

Note: This is a

simplified diagram.

It only shows the

keys. In reality, the

key also has its

value as well as

other information

stored with it.

Hash Table – Add

 Hash function:
Bucket = Key % NumBuckets

 Now add the key
52 to the hash
table:

Key = 52

NumBuckets = 10

Bucket = Value % NumBuckets

2 = 52 % 10

 Key 52 → Bucket 2

© 2021 Arthur Hoskey. All
rights reserved.

Hash Table

0

1

2

…

9 1949

91

52

805010

8222

11

Buckets

(indexes)

Hash Table – Add

 Add 71???

© 2021 Arthur Hoskey. All
rights reserved.

Hash Table

0

1

2

…

9 1949

91

52

805010

8222

11

Buckets

(indexes)

Hash Table – Add

 Hash function:
Bucket = Key % NumBuckets

 Now add the key
71 to the hash
table:

Key = 71

NumBuckets = 10

Bucket = Value % NumBuckets

1 = 71 % 10

 Key 71 → Bucket 1

© 2021 Arthur Hoskey. All
rights reserved.

Hash Table

0

1

2

…

9 1949

91

52

805010

8222

11

Buckets

(indexes)

71

Hash Table – Search

 Hash function:
Bucket = Key % NumBuckets

 Now do a search
for 49.

Key = 49

NumBuckets = 10

Bucket = Value % NumBuckets

9 = 49 % 10

 Key 49 → Bucket 9

© 2021 Arthur Hoskey. All
rights reserved.

Hash Table

0

1

2

…

9 1949

91

52

805010

8222

11

Buckets

(indexes)

71

Go directly to bucket

9. Need to search the

bucket but that is fast

since buckets contain

relatively few values.

Hash Table Time Complexity

Hash Table Time Complexity

 Hash tables are primarily used for their fast search speed.

 The number of buckets in a hash table needs to increase at certain
times to keep individual bucket lengths small (resizing the bucket
array needs to occur).

 The analysis below assumes the following:

◦ The hash function uniformly distributes elements across the
buckets.

◦ Double the number of buckets when the load factor reaches .75.

◦ Note: The load factor is the #items/#buckets.

 Find - O(1). Resizing by load factor will keep individual bucket
lengths very small, so the search time is constant.

 Add – O(1)+. The + means amortized cost. Costs O(1) when not
resizing and O(n) if it resizes. The amortized cost turns out to be
constant because over the course of many adds the extra cost of
occasionally resizing can be offset by assuming a small amount of
extra constant time for each of the non-resizing add operations.

© 2021 Arthur Hoskey. All
rights reserved.

Java hashCode

 Now we will cover the Java
hashCode method…

© 2021 Arthur Hoskey. All
rights reserved.

Java hashCode

 Java provides a hashCode method that serves as
a hash function.

 The hashCode method is used by Java's hash-
based collections.

 IMPORTANT! - If you provide an override
for equals in a class you should also provide
an override for hashCode.

© 2021 Arthur Hoskey. All
rights reserved.

Object hashCode Implementation

Object.hashCode() Method

 The Object.hashCode method returns a hash value for an
object.

int hashCode() – Returns a hash code for the current
instance.

 Object's default implementation of hashCode
generally returns the address of the object instance.

© 2021 Arthur Hoskey. All
rights reserved.

hashCode Properties

hashCode Properties

 If two object's return the same value from equals, they
MUST also return the same value from hashCode.

Same equals value → Same hashCode value

 In contrast, if two objects return the same value from
hashCode they do not necessarily return the same value
from equals. This is possible because objects with different
values can have the same hashCode value (they would go
in the same bucket).

Same hashCode value → Same equals value

© 2021 Arthur Hoskey. All
rights reserved.

hashCode Implementation

public class Employee {

public String firstName;

public String lastName;

@Override

public int hashCode() {

return firstName.hashCode() * lastName.hashCode();

}

@Override

public boolean equals(Object obj) {

Employee other = (Employee) obj; // Copy to Employee var

if (firstName.equals(other.firstName) == false)

return false;

if (lastName.equals(other.lastName) == false)

return false;

return true;

}

}

© 2021 Arthur Hoskey. All
rights reserved.

Hash Code

Includes all members (firstName

and lastName) in the hash code

calculation. This will allow

unequal objects to have different

values for their hash codes.

Many IDEs will have an option

that allows you to automatically

generate an override of the

hashCode method

hashCode Using a Constant

hashCode Using a Constant

 What effect does the following hashCode implementation have on
a hash table?

@Override

public int hashCode() {

return 1;

}

© 2021 Arthur Hoskey. All
rights reserved.

hashCode Using a Constant

hashCode Using a Constant

 We could write a hashCode method that just returns a constant.
For example:

@Override

public int hashCode() {

return 1;

}

 This would cause all elements to be placed in the same bucket in
the hash table (hash table deteriorates into a list).

 Since it is effectively a list the search time is now O(n).

 This defeats the purpose of using the hash table in the first place
(hash tables are used for their fast searches).

 Moral of the Story - The hashCode function must evenly
distribute elements in buckets to ensure a fast search.

© 2021 Arthur Hoskey. All
rights reserved.

Always returns 1. This is bad!!!

Will NOT evenly distribute

elements in buckets.

Java Collections and hashCode

Java Collections and hashCode

 The hashCode method is used to generate a hash.

 Java HashMap and HashSet classes generate hash
values of items they are storing using the hashCode
method.

 It can then mod those hash values as necessary to
put them in the appropriate bucket.

© 2021 Arthur Hoskey. All
rights reserved.

Hash Table vs Hash Sets

 Hash tables are designed around calculating
an index so we can go directly to the data.

Hash Table (general description)

 Maps keys to values (associative array). Will store key/value
pairs.

Hash Set (general description)

 An unordered collection of values (not key/value pairs).

 Both are good for searching for values

 Both use "buckets" to store data (fixes collisions)

 How it works:

Given a key the hash function transforms the key into a bucket
number then it stores/searches in ONLY that bucket.

© 2021 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2021 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Hash Table
	Slide 4: Array (Find)
	Slide 5: Array (Find)
	Slide 6: What if we knew the target element's index?
	Slide 7: Array (Find)
	Slide 8: Hash Table
	Slide 9: Hash Table
	Slide 10: Hash Table – Add
	Slide 11: Hash Table – Add
	Slide 12: Hash Table – Add
	Slide 13: Hash Table – Search
	Slide 14: Hash Table Time Complexity
	Slide 15: Java hashCode
	Slide 16: Java hashCode
	Slide 17: Object hashCode Implementation
	Slide 18: hashCode Properties
	Slide 19: hashCode Implementation
	Slide 20: hashCode Using a Constant
	Slide 21: hashCode Using a Constant
	Slide 22: Java Collections and hashCode
	Slide 23: Hash Table vs Hash Sets
	Slide 24: End of Slides

